Ferredoxin Containing Bacteriocins Suggest a Novel Mechanism of Iron Uptake in Pectobacterium spp
نویسندگان
چکیده
In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium Pectobacterium carotovorum carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of Pectobacterium carotovorum and Pectobacterium atrosepticum with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that Pectobacterium spp. carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of Pectobacterium carotovorum and atrosepticum that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells.
منابع مشابه
Structure of the bacterial plant-ferredoxin receptor FusA
Iron is a limiting nutrient in bacterial infection putting it at the centre of an evolutionary arms race between host and pathogen. Gram-negative bacteria utilize TonB-dependent outer membrane receptors to obtain iron during infection. These receptors acquire iron either in concert with soluble iron-scavenging siderophores or through direct interaction and extraction from host proteins. Charact...
متن کاملHitting with a BAM: Selective Killing by Lectin-Like Bacteriocins
Lectin-like bacteriocins (LlpAs) are secreted by proteobacteria and selectively kill strains of their own or related species, and they are composed of two B-lectin domains with divergent sequences. In Pseudomonas spp., initial binding of these antibacterial proteins to cells is mediated by the carboxy-terminal domain through d-rhamnose residues present in the common polysaccharide antigen of th...
متن کاملBacterial Secretome Analysis in Hunt for Novel Bacteriocins with Ability to Control Xanthomonas citri subsp. Citri
Background: Xanthomonas citri subsp. citri (Xcc), the causative agent of bacterial citrus canker, has affected citriculture worldwide. Varieties of means have been used to minimize its devastating effects, but no attention has been given to bacteriocins. Objectives: Here and for the first time, we report the isolation and characterization of two novel bacteriocins. Materials and Methods: Secret...
متن کاملInfluence of the ferric uptake regulator (Fur) protein on pathogenicity in Pectobacterium carotovorum subsp. brasiliense
Iron is an important nutrient for the survival and growth of many organisms. In order to survive, iron uptake from the environment must be strictly regulated and maintained to avoid iron toxicity. The ferric uptake regulator protein (Fur) regulates genes involved in iron homeostasis in many bacteria, including phytopathogens. However, to date, the role played by Fur in the biology of Pectobacte...
متن کاملRelationships of plant pathogenic enterobacteria based on partial atpD, carA, and recA as individual and concatenated nucleotide and peptide sequences.
Relationships of the genera in the Enterobacteriaceae containing plant pathogenic species: Brenneria, Dickeya, Enterobacter, Erwinia, Pantoea, Pectobacterium, and Samsonia, were investigated by comparison of their nucleotide and peptide sequences of atpD, carA, recA, and the concatenated sequences. Erwinia spp. and Pantoea spp., with Pectobacterium cypripedii, formed a group distinct from other...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012